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Simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry
(PIV) yield measurements of two-dimensional jet fluid concentration and velocity
fields in turbulent crossflowing jets. The jet-to-crossflow velocity ratio is r = 5.7 and
the jet exit Reynolds number is approximately 5000. The measurements are focused
on the developing region of the flow. Two flow configurations are studied, one in
which the jet nozzle is flush with the tunnel wall and the other where the nozzle
protrudes into the uniform region of the tunnel flow. The jet nozzle in both cases
is a simple pipe. The averaged scalar and velocity fields show a strong similarity in
growth rates and centreline decay rates between the two nozzle configurations when
using the centreline downstream coordinate s. This suggests that the flow geometry
is less important than, for example, jet exit conditions in determining the initial flow
development. The velocity fields show indications of jet-like scaling in the near field,
and a possible approach to wake-like scaling in the far field. These canonical scalings
are less evident in the scalar fields. Results are presented for the averaged scalar
variance, 〈C ′2〉, the scalar flux components, 〈u′

iC
′〉, the turbulent normal stresses, 〈u′2〉

and 〈v′2〉, and the turbulent shear stress, 〈u′v′〉. We also discuss the resolution issues
bearing on the determination of small-scale fluctuations.

1. Introduction
The crossflowing turbulent jet, in which a round jet is injected into a perpendi-

cular fluid stream, has considerable practical significance in engineering systems.
Combustion applications of this flow, for example, include aerospace propulsion,
gas-burning power generation, and the on-site purging of excess gases at oil drilling
sites. Many of these crossflowing jet applications involve mixing of molecular species
or temperature. Efforts to model the dynamics of the crossflowing turbulent jet are
described by Durando (1971), Broadwell & Breidenthal (1984), Karagozian (1986)
and Hasselbrink & Mungal (1996, 2001a). Problems confronting modelling work
include the complicated vortical structure of the flow, and the difficulty in modelling
the near-field development. A diagram of the characteristic vortical structures of the
crossflowing jet is given in figure 1. Shown are the horseshoe vortices that form at
the windward side of the jet exit, the jet shear-layer instability (shown on the jet
windward surface), the wake vortices, and the counter-rotating vortex pair (CVP).
The CVP becomes the dominant structural feature of the crossflowing turbulent jet
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Figure 1. The vortical structure of the crossflowing jet.

as the flow develops, and accounts for much of the modelling difficulty. Experimental
evidence also suggests that the flow is very sensitive to the ratio of jet velocity to
crossflow velocity, r ≡ u0/v∞, which constrains efforts to make general conclusions
about the flow configuration.

The velocity and vorticity fields of the crossflowing turbulent jet have been the
subject of many experiments. Much effort has focused on elucidating the structure of
the vorticity field (including the work of Andreopoulos 1985; Fric & Roshko 1994;
Kelso & Smits 1995; Kelso, Lim & Perry 1996; Rivero, Ferre & Giralt 2001). Pratte &
Baines (1967) used flow visualization to determine jet trajectories and flow widths, and
found that length scales are properly normalized by the factor rd, where d is the jet
exit diameter. The measurements spanned a range of r values from 5 to 35. Crabb,
Durão & Whitelaw (1981) mapped the mean flow of the crossflowing jet using both
laser-Doppler and hot-wire anemometry, for r = 1.15 and 2.3. Detailed measurements
of the turbulent stresses, measured using hot wires, were reported by Andreopoulos &
Rodi (1984) for flows with r = 0.5, 1 and 2. This work also demonstrated that the jet
exit velocity profile is strongly affected by the presence of the crossflow. Subsequently,
Sherif & Pletcher (1989) also mapped the fields of turbulence quantities, for r = 2, 4
and 6.

Despite the abundance of engineering applications involving molecular mixing, the
body of work devoted to mixing in the crossflowing turbulent jet is relatively small.
From measurements of velocities and jet fluid concentrations using probes in flows
with r from 6.5 to over 50, Patrick (1967) showed that the points of maximum
velocity penetrated further into the crossflow than the points of maximum con-
centration. Ramsey & Goldstein (1971) and Kamotani & Greber (1972) performed
probe measurements of temperature in a heated (weakly buoyant) crossflowing jet
in air, and reported that the mean temperature distribution in cross-sectional planes
had a kidney-like structure akin to the signature of the CVP in the vorticity field.
In these studies, the jet and crossflow fluid densities differ, so the jet-to-crossflow
momentum ratio (rm ≡ ρ0u

2
0/ρ∞v2

∞, so r1/2
m = r in the absence of density differences)
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is the defining flow parameter; Ramsey & Goldstein (1971) investigated rm values
of approximately 0.01 to 4.7, while Kamotani & Greber (1972) presented results for
rm from 15 to 60. Andreopoulos (1983) performed simultaneous probe measurements
of temperature and velocity, both the mean and fluctuating terms, in a heated non-
buoyant crossflowing jet in air, for r = 0.25, 0.5, 1 and 2. The results included
measurements of the turbulent scalar (temperature) flux terms. With an eye to
combustion applications, Birch et al. (1989) measured jet fluid concentrations, again
using probes, for a methane jet injected into an air crossflow. Both non-reacting and
reacting cases were considered, with values of rm ranging from 100 to 2000.

Modern laser-imaging methods have also been applied to crossflowing jet mixing.
Niederhaus, Champagne & Jacobs (1997) applied planar laser-induced fluorescence
(PLIF) to obtain scalar concentration fields in cross-sections of crossflowing jets in
water, with r =4.9 to 11.1. Applying PLIF in air-into-air crossflowing jets, Smith &
Mungal (1998) mapped the concentration field in cross-sectional planes, the symmetry
plane, and in planes parallel to the jet exit plane, for r ranging from 5 to 20.
Meyer, Özcan & Larsen (2002) implemented PLIF simultaneously with particle image
velocimetry (PIV) in a crossflowing jet in water at r = 3.3, allowing the determination
of turbulent scalar fluxes in two-dimensional domains.

Progress toward simulating the crossflowing turbulent jet has accelerated in tandem
with advances in computational power and algorithm development. Alvarez, Jones &
Seoud (1993) described computations of crossflowing jets with r = 0.5 and 2, including
scalar mixing, using the Reynolds-averaged Navier–Stokes (RANS) approach.
Accurate computation of the turbulent scalar flux terms was found to be particularly
challenging. Large-eddy simulation (LES) is now being explored for crossflowing
jet simulations, because of the inherent ability of the LES formulation to handle
temporal unsteadiness and spatial complexity. Yuan, Street & Ferziger (1999) (also
Yuan 1997; Yuan et al. 1998) computed jets with r =2 and 3.3 using LES. The
results faithfully reproduced the large-scale vortical structures of the flow, as well
as statistics of fluctuation quantities, such as Reynolds stresses. The high sensitivity
of the flow to jet inflow conditions was noted through explicit computation of the
jet flow upstream of the exit. Interest in LES of the crossflowing jet is also driven
by combustion applications. Schlüter & Schönfeld (2000) reported LES results for
passive scalar mixing in crossflowing jets with r between 2 and 6, paying particular
attention to the effects of grid resolution and different subgrid models. That study
also included the computation of a crossflowing jet in a realistic gas turbine burner
geometry.

The present measurements are intended to provide a comprehensive view of the
scalar and velocity fields in the developing region of the crossflowing turbulent jet
in the gas phase, using planar imaging techniques. PLIF is used for the scalar field
measurements, and PIV for the velocity field measurements. In order to evaluate the
three-dimensionality of the flow, we perform the planar measurements in the centre-
plane (i.e. the jet symmetry plane) and at various positions off the centreplane. Prior
crossflowing jet studies have identified a multitude of factors that affect the flow
development, including the velocity (or momentum) ratio, and the jet initial velocity
profile and Reynolds number. Here, we investigate instead the effect of the crossflow
velocity profile, and the proximity of flow boundaries, by placing the jet nozzle exit
both flush with the wind tunnel wall, and also outside the crossflow boundary layer.
All measurements are made at a single jet-to-crossflow velocity ratio (r =5.7) and jet
exit Reynolds number (≈ 5000). Velocity ratios of around 5 are of particular interest
in aerospace propulsion applications.
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A major goal of the present study is to determine the large-scale properties of both
the scalar mixing and velocity fields in the crossflowing jet flow. These properties
include the jet centreline trajectory, in the form x = fn(y); the jet width, δ, in terms of
the jet centreline coordinate, s; and the velocity and scalar concentration decay on
the centreline as functions of s. In analysing the scaling properties of the crossflowing
jet, the flow may be divided into three regimes. In the near field, for sufficiently large
r , the jet momentum dominates and the flow can be expected to approximate a pure
jet. The flow then bends through an intermediate region until, in the very far field,
memory of the initial conditions will be lost and the flow is expected to resemble a
wake. However, whether the flow does attain this asymptotic state, and whether it
displays self-similarity, are still unclear. The answers may depend, for example, on
whether the nozzle exit is flush with a wall, as shown in figure 1, or is well away from
any flow boundaries.

The present work also aims to provide a comprehensive mapping of the velocity
and scalar fields in the crossflowing turbulent jet, suitable for assessment of ongoing
computational efforts. The mapping of the flow is presented in terms of profiles
of averaged quantities, along the jet initial direction and the crossflow direction.
In addition to profiles of the mean scalar values and velocity components, we
present profiles of the (averaged) scalar variance, 〈C ′2〉, scalar flux components, 〈u′

iC
′〉,

turbulent normal stresses, 〈u′2〉 and 〈v′2〉, and turbulent shear stress, 〈u′v′〉. Accurate
reproduction of these small-scale fluctuation terms is essential for combustion
applications, and poses a rigorous challenge for simulations.

The paper is organized as follows. Section 2 describes the experimental conditions.
Discussion of the structure and scaling properties of the mean scalar and mean
velocity fields are given in § 3 and § 4, respectively. Section 5 presents results from the
turbulent fluctuations, and § 6 summarizes the major conclusions of this work.

2. Experimental conditions
These experiments are performed in an updraft wind tunnel with air as crossflow

fluid and nitrogen as jet fluid. The jet fluid is seeded with acetone vapour (molecular
weight 58.08) to 10% by volume for diagnostic purposes, so the ratio between the
jet fluid density, ρ0, and the ambient fluid density, ρ∞, is 1.10. The tunnel cross-
section measures 50 × 50 cm2. Two fine-mesh screens and one honeycomb section
condition the tunnel flow. For the present experiments, the tunnel crossflow velocity
profile has a peak value of v∞ = 2.95 m s−1. The jet nozzle is a simple pipe with
6.35 mm outer diameter, inner diameter d =4.53 mm, and length 320 mm. In the
absence of a crossflow, fully developed pipe flow conditions would prevail at the jet
exit; the presence of the crossflow, however, is known to affect the jet exit profile
(e.g. Andreopoulos & Rodi 1984). The jet exit velocity profile is not measured in
these experiments. The average (bulk) jet velocity based on volumetric flow rate is
u0 = 16.9 m s−1, giving a velocity ratio r = 5.7 and a jet exit Reynolds number of
approximately 5000.

The binary diffusivity of acetone and air, at 300 K and 1 atm, is D = 0.104 cm2 s−1

(Reid, Prausnitz & Poling 1987), so with the kinematic viscosity of air being
ν =0.155 cm2 s−1, the Schmidt number, Sc ≡ ν/D, of the system is 1.49. To seed the
acetone vapour into the jet flow, the jet fluid is passed through a bubbler containing
liquid acetone. The bubbler is maintained at a near-constant temperature by an
open-loop water flow through tubing immersed in the acetone supply. During an
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experimental run, the acetone level in the bubbler, and the seeding efficiency, slowly
diminishes. The data processing procedure necessarily accounts for this (§ 2.2).

2.1. Optical arrangement

Particle image velocimetry (PIV) is used to measure the velocity fields whereas
planar laser-induced fluorescence (PLIF) is used for the scalar field measurements.
To provide the Mie scattering signal for particle image velocimetry, the jet flow is
seeded with submicron aluminium oxide particles, while the crossflow is seeded with
a glycerol–water fog produced by a commercial fog machine (Rosco 1500). A single,
dual cavity Nd:YAG laser (Spectra-Physics PIV-400), with frequency-doubled 532 nm
output, is used to produce two laser sheet pulses in quick succession. The time delay
between pulses is as short as 8 µs. The resulting scattering signal is collected by an
interline transfer CCD camera (Kodak Megaplus ES 1.0, 1K×1K pixel resolution),
fitted with a 35 mm format Nikon 105 mm f/2.8 macro lens. The frame transfer
capability of this camera allows each of the two closely spaced laser sheet pulses
to be captured in a separate image. This permits the use of a cross-correlation
PIV algorithm (Hasselbrink 1999), which eliminates directional ambiguity and yields
improved resolution over single-image autocorrelation techniques. The algorithm
used here also incorporates iterative interrogation window offset to increase vector
yield.

For the laser-induced fluorescence, acetone is seeded into the jet fluid stream, to
approximately 10% by volume. To excite the fluorescence signal, a XeCl excimer
laser with 308 nm output (Lambda-Physik EMG 203MSC) is used. The PLIF signal
is captured by a thermoelectrically cooled slow-scan CCD camera (Photometrics
AT200), with 512 × 512 pixel resolution. The imaging lens is a 35 mm format Nikon
50 mm f/1.2 lens, fitted with a +1 dioptre close-up lens for close focusing. Two
2 mm thick BG-25 bandpass filters isolate the PLIF signal (which peaks in the range
400–500 nm) from the much brighter Mie scattering signal at 532 nm. Post-processing
of the PLIF data corrects for background light levels, non-uniformity in laser sheet
intensity, and local laser intensity attenuation caused by passage of the sheet through
the fluorescent medium. Experiment timing and synchronization are controlled by
three Stanford Research Systems DG 535 pulse generators.

With the jet as depicted in figure 1, the vertically oriented laser sheets pass through
the flow from right to left (from the +x to the −x direction). Prior to entering
the measurement area, both the 532 nm and 308 nm laser beams pass through a
focusing spherical lens (nominal focal length f = 1mm), a diverging cylindrical lens
(f = −20 mm) to form the sheets, and a converging cylindrical lens (f = 250 mm) to
control the sheet spreading angle. Special care is taken to ensure that the two laser
sheets are spatially coincident throughout the measurement area. The centres of the
two sheets are separated by no more than 50 µm throughout the measurement area,
where the thickness of the 532 nm sheet varies from approximately 300 to 800 µm,
and the thickness of the 308 nm sheet ranges from 500 to 1000 µm.

2.2. Flow mapping

The aim of the present measurements is to provide a comprehensive picture of the
mixing and velocity fields in the developing region of the turbulent crossflowing jet.
The imaging planes are parallel to the plane of the crossflowing jet trajectory; the
planar measurement area extends from the jet exit, and encompasses the onset of
the region identified as the far field by Smith & Mungal (1998) on the basis of
scalar measurements. To evaluate the three-dimensionality of the flow, the planar
measurements are taken in the jet centreplane, as well as in planes located at 0.22rd,
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Figure 2. A sample image pair, from the centreplane of the protruding nozzle case. (a)
The scalar field, showing the 8 imaging subwindows used for PIV. (b) The PIV vector field
corresponding to the solid box (subwindow number 5) in (a). (c) The two-dimensional stream
traces for the vector field in (b).

0.45rd, 0.67rd, 0.89rd and 1.11rd off the centreplane. Two jet nozzle positions are
considered, the first in which the nozzle exit is flush with the wind-tunnel wall,
and the second in which the nozzle protrudes 100 mm into the crossflow, allowing
assesment of the effect of the crossflow boundary layer on the flow development. The
80% point of the boundary-layer profile lies 6mm from the wind-tunnel wall, so, in
this protruding nozzle case, the jet is well outside the crossflow boundary layer.

A sample PLIF image, taken in the centreplane with the protruding nozzle, is
shown in figure 2(a). As shown in figure 1, x is the initial jet direction, y is the
crossflow direction, and z is the out-of-plane direction. In these scalar measurements,
it is necessary to include the jet potential core in the imaging region, to permit the
correlation of measured signal levels with jet fluid concentration. The size of the
scalar imaging region is then restricted by the desire to resolve fine-scale fluctuations
in the scalar field in the 512 × 512 pixel images. The resulting raw PLIF imaging
window spans roughly 3.5rd per side, and is identical for all of the measurements.
In contrast, it is not required that the PIV images include the potential core for
reference purposes. The PIV processing, however, inherently compromises resolution,
yielding here a final vector resolution of 100 × 100 pixels from the original 1K × 1K
Mie scattering images. In order that the processed PIV results resolve fluctuations in
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Nozzle
position z (rd) Total images PIV subwindow (number of images)

Flush 0 821 1(105), 2(103), 3(89), 4(101), 5(101), 6(92), 7(98), 8(132)
0.22 615 1(70), 2(71), 3(63), 4(74), 5(73), 6(68), 7(61), 8(135)
0.45 478 1(40), 2(53), 3(39), 4(54), 5(68), 6(69), 7(66), 8(89)
0.67 303 4(35), 5(67), 6(40), 7(68), 8(93)
0.89 166 5(38), 7(55), 8(73)
1.11 40 8(40)

100 mm 0 908 1(98), 2(102), 3(100), 4(100), 5(132), 6(155), 7(120), 8(101)
0.22 595 1(74), 2(67), 3(65), 4(66), 5(87), 6(77), 7(75), 8(84)
0.45 469 1(33), 2(49), 3(37), 4(79), 5(67), 6(72), 7(64), 8(68)
0.67 309 4(52), 5(65), 6(51), 7(75), 8(66)
0.89 167 5(49), 7(52), 8(66)
1.11 36 8(36)

Table 1. Coverage of the measurement region by the PLIF and PIV imaging planes, with
the jet nozzle positioned either flush with the tunnel wall or protruding 100mm into the
main flow. The spacing, z, between the measurement planes and the jet trajectory plane is
given in multiples of rd. Shown is the total number of PLIF images at each z position.
Each PLIF measurement has a corresponding PIV measurement taken in one of the eight
subwindows shown in figure 2; also shown are the particular PIV subwindows, and the number
of measurements in each subwindow, used for each of the positions z.

the velocity field, the full PLIF imaging region is tiled by eight smaller PIV imaging
windows, as indicated by the dashed boxes in figure 2(a). For the particular scalar
field shown in the figure, the simultaneous PIV field is given in figure 2(b), and
corresponds to the solid box (subwindow number 5) in figure 2(a). (Figure 2(c) shows
the two-dimensional stream trace pattern for the vector field in figure 2(b); this will
be discussed further in § 4.1.) Table 1 summarizes the mapping of the flow for the full
set of measurements. For z = 0, 0.22rd and 0.45rd, PIV measurements are made in
the full set of eight subwindows indicated in figure 2(a), while for z = 0.67rd, 0.89rd
and 1.11rd, PIV measurements are made only in those subwindows in which the flow
is expected to be significantly affected by the presence of the jet.

All scalar field results are normalized by the scalar concentration value in the jet
nozzle, C0. For each image in the jet centreplane, z = 0, the jet potential core is in view
(e.g. figure 2) and we can determine C0 directly. For the off-centreplanes, however,
C0 cannot be found in this way. Instead, C0 for those images was determined by
extrapolating the known values from the z =0 planes. The imaging measurements
were performed in groups, having fixed nozzle position and PIV imaging subwindow;
in each such group, sets of images were collected for the range of image plane
locations z, beginning with z = 0. The acetone bubbler was filled only prior to each
measurement group. Recognizing that the value of C0 drops in absolute terms during
the experiments as the acetone seeding efficiency drops (§ 2), the decay rate of C0 was
measured explicitly. We determined the C0 decay rate to be �C0/�T ≈ −0.00034,
normalized such that C0 = 1.0 initially, and where �T , the time between successive
images, was 16 s. The appropriate C0 for the z �= 0 imaging planes was then found
using this value of �C0/�T . (Power fluctuations in the excimer laser light source can
also affect C0; however, for these measurements, the averaged laser pulse power was
essentially constant over the course of each measurement group.)
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Figure 3. The (s, n, z) and Cartesian coordinate systems. The systems are related
by rotation about the z-axis through the angle θ .

2.3. Coordinate systems

In analysing the crossflowing jet, it is sometimes preferable to use a coordinate system
that reflects the downstream evolution of the flow. Given knowledge of the flow
centreline, we define s as the coordinate along this centreline, and n as normal to the
centreline, where the (s, n)-plane is the same as the Cartesian (x, y)-plane (figure 3).
The z-coordinate is the same in both coordinate systems. The positive-n side of the
jet is referred to as the windward side, and the positive-n boundary is also called the
jet outer boundary, while the negative-n side of the jet is known as the lee or wake
side, and the negative-n boundary is also called the jet inner boundary.

An intuitive definition of the flow centreline is in terms of the centre streamline,
namely the streamline, determined from the mean flow field, that originates in the
centre of the nozzle exit. However, other centreline definitions are possible, for
example, using scalar or velocity field magnitudes. In this paper, where the (s, n, z)
coordinate system is used, the particular definition of the centreline will be clearly
indicated.

3. Scalar field structure and scaling
Samples of instantaneous scalar fields, for the flush nozzle flow configuration, are

shown in figure 4. The fields shown are for the jet centreplane (z = 0), as well as
the planes z =0.22rd, 0.45rd and 0.67rd. All scalar fields are normalized by C0, the
jet nozzle scalar concentration. The z =0 scalar field shown is typical in that the
jet scalar boundary on the lee side (the −x side) is marked by thin scalar filaments,
which are aligned normal to the jet trajectory. These filaments probably correspond
with the wake vortices that form when the uniform crossflow encounters the jet near
field (figure 1). The lee-side jet boundary for the z � 0.22rd measurement planes
shows essentially no evidence of these filaments, suggesting that the individual wake
vortices remain closer to the centreline within the measurement area. Scalar fields for
the protruding nozzle case are qualitatively similar to those of figure 4; the slight,
though noticeable, differences are that typical scalar fields for the flush nozzle case
both penetrate further into the crossflow, and spread into the z > 0 planes nearer to
the nozzle exit.
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Figure 4. Sample scalar fields for the flush nozzle case, for (a) z = 0 (the jet centreplane),
(b) z = 0.22rd, (c) z =0.45rd and (d ) z =0.67rd. Values are normalized by the initial jet
concentration C0.

Figure 5 shows the mean scalar fields, 〈C〉 (where C = 〈C〉+C ′), for the flush nozzle
case, again in the planes z = 0, 0.22rd, 0.45rd and 0.67rd. The averages are compiled
over 821, 615, 478 and 303 images for the respective z-positions (table 1). Again, the
mean scalar fields for the protruding nozzle position (not shown) are qualitatively
similar to the flush nozzle fields, with the differences being the same as those identified
in the instantaneous fields.

3.1. Flow trajectory

The mean scalar fields as shown in figure 5 are first used to quantify the jet develop-
ment in terms of the scalar flow trajectories. We define the scalar centreline as the locus
of points of maximum mean scalar concentration along trajectory-normal profiles.
The scalar centreline is found by first determining the points of maximum mean
scalar concentration along fixed-x profiles in the jet near field, and fixed-y profiles in
the far field of the measurement region, then using this tentative trajectory to define
the trajectory-normal profile directions. The maximum mean scalar values on those
profiles then define the scalar centreline.

Figure 6 shows the jet development in terms of the scalar centreline trajectory in
the centreplane, for both the flush and protruding nozzle cases. The figure shows the
tendency of the jet issuing from the flush nozzle to impinge further into the crossflow.
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Figure 5. The mean scalar field for the flush nozzle case, in the planes (a) z =0,
(b) z = 0.22rd, (c) z = 0.45rd and (d ) z = 0.67rd.
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Figure 6. Scalar centreline trajectories in the jet centreplane (z = 0). The dashed line is the fit
to the flush nozzle data of equation (3.1).
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Figure 7. The decay of maximum mean scalar concentration with downstream distance in
the centreplane, for both the flush and protruding nozzles. The coordinate s is the coordinate
along the scalar centreline, as defined by (3.1).

The dashed line is a least-squares fit to the flush nozzle data of the function

(x/rd) = A(y/rd)m, (3.1)

with A= 1.95 and m = 0.302. The fit to the protruding nozzle data gives A= 1.81 and
m = 0.323. The tendency of the flow in the flush nozzle case to penetrate further into
the crossflow can be intuitively explained by noting that in that case, the jet initially
flows through low-momentum fluid in the crossflow boundary layer. The analysis of
velocity field trajectories suggests that the picture may be more complex, however
(see following section).

3.2. Centreline decay and flow width

The decay of the maximum scalar concentration in the centreplane, for both the
flush and protruding nozzle cases, is shown in figure 7. The data are plotted in
terms of the scalar centreline downstream coordinate, s, which is determined through
numerical integration of the best-fit trajectories defined by (3.1). Beyond the potential
core, the maximum concentration C(s) decays roughly as 1/s, which is the decay
dependence seen in simple jets. This contrasts with the results of Smith & Mungal
(1998), for values of r ranging from 5 to 25, who found an initial decay faster than
1/s. Those earlier results also showed distinct branch points where the concentration
decay abruptly slowed, possibly to an s−2/3 dependence which would indicate wake-
like behaviour. However, the present data show a decay rate which actually increases
beyond s/rd ≈ 2.5. Also of interest is the agreement between the flush and protruding
nozzle cases when the data are plotted in this centreline coordinate. The functional
dependences of the decay curves are similar, as is the point at which the decay rate
increases beyond 1/s, though the potential core in the flush nozzle case penetrates
further into s space.

Figure 8 shows the dependence of the flow widths on the scalar centreline coordinate
s. The flow nominal half-width for a given s is computed by first determining the
maximum concentration, C(s), then moving in the trajectory-normal direction until
the concentration drops to a specified fraction (here, 20%) of C(s). Because the flow
is not symmetric about the centreline trajectory in the imaging plane, it is necessary
to compute these partial widths separately for both the −x direction (i.e. towards
the wake region) and the +x direction (towards the jet outer booundary). We denote
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Figure 8. Mean scalar field flow width in the centreplane as a function of the scalar
centreline coordinate, s, for both nozzle positions. The quantity δfull is the flow width in
the trajectory-normal direction, n, between points where the scalar value is 20% of the
maximum; δ−x and δ+x are the associated partial widths measured from the centreline toward
the wake region and the jet outer boundary, respectively.

these partial widths by δ−x and δ+x , and the full width by δfull ≡ δ−x + δ+x . Figure 8
shows the results for δ−x , δ+x and δfull as functions of s. The lack of symmetry, with
δ−x > δ+x , is clear. This asymmetry is due to jet fluid that is stripped away from the
developing region of the jet by the crossflow and is deposited in the wake region.
Jet fluid is present in the wake region even near the nozzle (small s), as can be seen
in both the instantaneous and mean scalar fields (figures 4 and 5). As a result, just
outside of the potential core, the growth rate of δfull exceeds δ ∝ s, the linear growth
observed in pure jets. For higher values of s, the δfull curve shows evidence of an
asymptotic approach to an s1/3 dependence, which would correspond to a wake-like
scaling. Finally, the curves for both the flush and protruding nozzle cases are in good
agreement for s/rd > 1, again showing the similarity in flow development for the two
configurations when the centreline coordinate s is used.

3.3. Three-dimensionality in the scalar field

Whereas the flow width, δfull, appears for both the flush and protruding nozzle
cases to be approaching a dependence on the centreline coordinate, s, consistent
with a wake-like scaling, the concentration decay does not. These scaling laws rely
upon self-similarity in the mean profiles, so it is reasonable to look to a lack of
self-similarity to explain the departures from wake scaling seen in the data. The three-
dimensionality of the flow will also be important. Figure 9 shows the maximum mean
scalar concentration as a function of s for the jet centreplane, as well as for planes
located 0.22rd, 0.45rd, 0.67rd and 0.89rd off of the centreplane. The data are for the
flush nozzle case; the protruding nozzle data are qualitatively similar. The coordinate
s for all of these curves is determined from the jet scalar centreline trajectory in the
centreplane, and the maximum mean scalar values, Cm, are those along the profile
in the n-direction (the in-plane trajectory-normal direction). Of particular note in
the figure is that the highest scalar concentration is not found in the centreplane for
s/rd > 2.2. Instead, the jet cross-section takes on a bimodal profile in which the scalar
maxima lie off of the centreplane. This is sufficient to explain the deviation from a
wake-like concentration decay in the centreplane, because the wake similarity profile
has its peak on the centreline.
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Figure 9. The decay of maximum mean scalar concentration, Cm, with downstream distance,
for the measurement planes z =0, 0.22rd, 0.45rd, 0.67rd and 0.89rd. Data for the flush nozzle
case.
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Figure 10. Mean scalar concentration values on the scalar centreline as functions of the
z-coordinate, for fixed s = 1.0rd, 1.5rd, 2.0rd, 3.0rd and 4.0rd, and n= 0. Data for the flush
nozzle case.

Figure 10 shows the profiles of mean scalar values in the z-direction, for different
values of the scalar centreline coordinate, s, and n= 0. The lack of similarity in these
profiles is clear; in particular the s =3.0rd and 4.0rd profiles have higher 〈C〉 values
at z = 0.22rd than in the centreplane. The tendency of the maximum mean scalar
values to be achieved at z > 0 is, however, less pronounced in these z-profiles than in
the decay curves of Fig. 9, because the z-profiles are for n= 0, and (as will be seen
below, in Fig. 12) the scalar maxima in the off-centre, z > 0 planes lie at n< 0.

Figure 11 presents a different view of the three-dimensionality of the scalar field.
Shown are the boundary contours for the scalar field in the centreplane and in
the z = 0.22, 0.45rd, 0.67rd and 0.89rd planes, together with the scalar centreline
trajectory for the centreplane. The contours represent the loci of points in a given
scalar trajectory-normal plane where the local scalar value is 20% of the maximum
scalar value in the centreplane. On the outer boundary of the flow (i.e. the positive
x side of the centreline), the deepest penetration occurs in the centreplane, with
progressively shallower penetration for increasing off-centre position z. Meanwhile,
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Figure 11. Boundary contours for the mean scalar field. The curves represent the loci of
points in a given scalar trajectory-normal plane (i.e. fixed s) where the local mean scalar value
is 20% of the maximum value in the centreplane. Data for the flush nozzle case.

on the wake side of the flow, with increasing y, the boundaries for the off-centreplanes
all lie further from the centreline trajectory than does the boundary in the centreplane.
This corresponds to a kidney-like shape of the flow cross-section, as depicted in
figure 1. This cross-sectional shape arises because of the dominant role played by the
counter-rotating vortex pair (CVP) in the large-scale organization of the flow.

Figure 12 illustrates the cross-sectional form of the mean scalar field, in the form
of profiles of 〈C〉 along the trajectory-normal direction, n, in the different z-planes.
Shown are the profiles for s = 2.0rd, 3.0rd and 4.0rd. The n-coordinate is defined
as positive toward the jet outer boundary (figure 12a). The kidney-like form of the
cross-section is evident in that the 〈C〉 profiles for z = 0.22rd are broader than the
z = 0 profiles, for the three s values shown; for s = 3.0rd and 4.0rd, the z = 0.45rd
profiles are also broader than the profiles in the centreplane. Also, while the peaks
of the 〈C〉 profiles in the z = 0 plane lie by definition at n= 0, figure 12 also shows
clearly that the profile peaks for z > 0 lie toward the wake side of the flow (n< 0).

The current measurements show good agreement in decay rates and flow widths
(when expressed in terms of the scalar centreline coordinate s) between the flush and
protruding nozzle cases, yet the decay rates differ from those reported by Smith &
Mungal (1998), whose results were consistent over a range of velocity ratios r . The
most notable difference is that Smith & Mungal used a top-hat jet exit velocity profile
while the present data use a pipe flow profile. The conclusion drawn here is that the
jet exit profile plays a larger role in establishing the scaling properties of the mixing
field than does the jet nozzle position or the value of r . This result is supported by
the idea that the development of the counter-rotating vortex pair, which dominates
the far-field flow structure, is highly dependent on vorticity introduced at the nozzle
(e.g. Haven & Kurosaka 1997).

3.4. Mean scalar field x- and y-profiles

From the results for the mean scalar fields, we can also compile profiles through the
jet in the (x, y)-plane. Profiles in Cartesian coordinates should facilitate comparisons
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Figure 12. Profiles of mean scalar concentration along the trajectory-normal coordinate, n,
in the different z = const measurement planes, for (a) s = 4.0rd, (b) s = 3.0rd and (c) s = 2.0rd.
Data for the flush nozzle case.

with other existing or future computational or experimental results. Figure 13 presents
profiles of 〈C〉 in the jet centreplane for both the flush and protruding nozzle cases,
along lines of fixed y = 0.5rd, 1.0rd, 1.5rd and 2.5rd, and fixed x =0.1rd, 0.5rd, 1.0rd
and 1.5rd. The profiles are compiled as averages over nine adjacent rows or columns
in the 512×512 data planes, so each profile actually represents a thin band through
the data, extending ±0.027rd from the nominal fixed x or y value. Because these
profiles are in Cartesian coordinates, rather than coordinates defined by the scalar
trajectory, any comparisons of the different profiles (for example, to assess similarity)
must recognize that the profiles are not transverse to the direction of flow evolution.

We can quantify the discrepancy between the fixed-x and y profiles and the true
local scalar trajectory-normal direction, n, by defining the flow trajectory in terms
of the maximum scalar concentration, as in § 3.1, and using the best-fit curves
(x/rd) = 1.95 (y/rd)0.302 for the flush nozzle data and (x/rd) = 1.81 (y/rd)0.323 for the
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Figure 13. Averaged scalar field profiles in the jet centreplane, for both the flush and
protruding nozzle cases. (a) The profiles for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd, and (b) the
profiles for x = 0.1rd, 0.5rd, 1.0rd and 1.5rd. Also indicated on the plots are the centre
streamlines for the two nozzle positions (§ 4.2).

protruding nozzle data. Table 2 shows the angle, θ , between the local scalar trajectory-
normal direction and the profile direction for each of the profiles in figure 13. This
θ is simply the rotation angle defined in figure 3. Just outside the jet exit, θ = 0;
by x = 1.0rd, θ = 20◦ for the flush nozzle and 26◦ for the protruding nozzle, as the
flow bends in the crossflow direction; for both nozzle positions, θ = 24◦ at y = 1.5rd,
dropping to 17◦ at y =2.5rd, as the jet flow increasingly aligns with the crossflow.

The profiles at x =0.5rd are symmetric around the position of peak concentration,
except for a slight elevation in the tails on the positive-y side, representing jet fluid
that has been advected into the wake region on the lee side of the jet. The x = 1.0rd
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Nozzle x/rd: 0.1 0.5 1.0 1.5 y/rd: 0.5 1.0 1.5 2.5

Flush 0 4◦ 20◦ 43◦ 44◦ 30◦ 24◦ 17◦

100mm 0 7◦ 26◦ 49◦ 43◦ 30◦ 24◦ 17◦

Table 2. The angle θ between the local scalar trajectory-normal directions and the profile
directions, for the profiles given in figure 13.

profiles show similar properties, though the increased scalar concentration in the
wake region is more pronounced. For example, the profile for the flush nozzle case
at x = 1.0rd is bell-shaped for y/rd � 0.25, with the wake becoming prominent for
higher y. By x = 1.5rd, the profiles give no hint of symmetry. The nature of the
asymmetry in these fixed-x profiles would not be significantly affected by compiling
the profiles in the directions normal to the true scalar trajectory. The centreline scalar
concentration was seen in figure 7 to be consistent with pure jet scaling in the near
field; however, the scalar field flow widths in figure 8, and the fixed-x profiles in
figure 13, show no evidence of jet-like self-similar evolution in the near field of these
crossflowing jets.

The fixed-y profiles in figure 13 are also noticeably asymmetric, with the peak 〈C〉
values lying to the windward side of the profiles for y = 0.5rd, 1.0rd and 1.5rd, as
also seen in figure 12. By y =2.5rd, the asymmetry seems to be reduced, though the
flow partial-widths shown in figure 8 demonstrate that the asymmetry is significant
even at the downstream limit of the meaurement area. The flow full-widths shown in
figure 8 do give some indication that these crossflowing jets are approaching a wake-
like scaling, though the asymmetric fixed-y profiles in figure 13, and the centreline
concentration decay in figure 7, argue that these crossflowing jets have not achieved
the self-similar wake limit within the measurement area.

Figure 14 shows the averaged scalar field profiles for both the flush and protruding
nozzle cases in the z =0.22rd plane. Comparing these profiles with those in the
centreplane (figure 13) reinforces the point illustrated earlier by figure 12, namely that
the maximum scalar magnitudes lie off the centreplane. The profiles in the z =0.22rd
plane are asymmetric throughout the measurement region, with the peak 〈C〉 values
lying on the windward side of the profiles in the near field (notably the x = 0.5rd
and 1.0rd profiles). As also seen in figure 12, the peak 〈C〉 values then move to the
wake side further downstream (the fixed-y profiles). The 〈C〉 profiles in the z =0.45rd
plane, given in figure 15, show the same asymmetry as do the profiles for z =0.22rd.

The profiles for both nozzle configurations are in excellent agreement at the
maximum downstream location (y =2.5rd) in the z = 0.45rd plane, and are in good
agreement at y = 2.5rd in the z =0 and 0.22rd planes. This observation supports the
notion that the jet nozzle position does not have a significant effect on the asymptotic
state of the flow, which was also concluded in § 3.3 on the basis of the scaling
properties of the flow.

4. Velocity field structure and scaling
Figure 16 shows the the averaged velocity magnitude fields for the protruding

nozzle case, in the jet centreplane, z =0, and in the planes z = 0.22rd, 0.45rd and
0.67rd. As mentioned in § 2.2, these full fields are composed of eight subwindows. For
the z = 0.67rd plane, no velocity measurements were performed in the subwindows
labelled 1–3 in figure 2. The crossflow speed, v∞, has been subtracted from the vertical
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Figure 14. Averaged scalar field profiles in the z = 0.22rd plane, for both the flush and
protruding nozzle cases. (a) The profiles for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles
for x = 0.5rd, 1.0rd and 1.5rd.

velocity component in these figures. A minimum of 98 images were averaged for each
subwindow in the centreplane, and more than 65, 33 and 51 images were averaged in
each subwindow in the z = 0.22rd, 0.45rd and 0.67rd planes, respectively (table 1).

In figure 16(a) it is apparent that the region of large velocity magnitudes has
a bifurcated structure, with one branch appearing to evolve from the initial jet
trajectory, while the other branch turns more sharply into the wake region of the
jet. This contrasts with the averaged scalar field of figure 5(a), in which the highest
values follow a single trajectory. The bifurcated structure is also evident in the raw
velocity magnitude fields computed without crossflow subtraction. This issue will be
explored in § 4.2.
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Figure 16. The mean velocity magnitude field for the protruding nozzle case, with the
crossflow speed v∞ subtracted from the vertical velocity component, in the planes (a) z = 0,
(b) z = 0.22rd, (c) z = 0.45rd and (d ) z = 0.67rd. For the z = 0.67rd plane, velocity measurements
were not performed in subwindows 1–3 (figure 2).
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Figure 17. Two-dimensional streamlines determined from the mean velocity field results in
the centreplane, for (a) the protruding nozzle case and (b) the flush nozzle case.

The mean velocity magnitude fields for the flush nozzle configuration (not shown)
are qualitatively similar to those for the protruding nozzle configuration shown in
figure 16. The apparent differences echo those noted in comparing the mean scalar
fields for the two nozzle positions (§ 3); the velocity magnitude field for the flush
nozzle case initially penetrates further into the crossflow, and more rapidly spreads
from the z = 0 plane.

4.1. Two-dimensional streamlines

It is, perhaps, more intuitive to visualize velocity fields in terms of stream
trace patterns. Figure 2(c) showed instantaneous, two-dimensional stream traces
corresponding to the scalar and velocity vector fields shown in figures 2(a) and
2(b). Each stream trace shown in figure 2(c) is computed using a fourth-order Runge–
Kutta path integration through the instantaneous velocity field. The flow pattern
shows a general ‘waviness’ throughout most of the measurement window in figure 2(c).
Additional complexity is evident at the lower right-hand side of the window, near the
jet outer boundary, though the vector plot of figure 2(b) indicates that the in-plane
velocity components are small in that region. The dashed trace in figure 2(c) indicates
an area in the window where the traces diverge rapidly, probably due to significant
three-dimensionality in the flow. It has been noted previously (Hama 1962) that
relatively simple wavy flow patterns such as those in figure 2(c) can result in efficient
mixing and highly convoluted scalar fields.

To compare the mean velocity fields for the protruding and flush nozzle cases,
figure 17 shows the averaged velocity fields in the centreplane, for both nozzle
configurations, in terms of their patterns of two-dimensional stream traces. Although
only two velocity field components are available from the PIV, the computed traces
in figure 17 represent actual flow streamlines, because the mean out-of-plane velocity
component is zero in the centreplane, by symmetry. The initial points for the stream-
lines are chosen arbitrarily, so the spacing between the streamlines shown does not
necessarily reflect their relative streamfunction values. The streamline patterns for
the two nozzle positions are qualitatively very similar. In the jet near field (x → 0),
both patterns show a stagnation point with positive two-dimensional divergence to
the lee side (positive y); in contrast, to the windward side (negative y), there is no
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Figure 18. Two-dimensional stream traces determined from the mean velocity field results in
the z = 0.22rd, for (a) the protruding nozzle case and (b) the flush nozzle case.

stagnation point, with all streamlines being entrained into the jet. This behaviour has
previously been noted by Hasselbrink & Mungal (2001b) in crossflowing jets with
r = 10 and 21. The patterns for the two nozzle positions do differ in the position of
the lee-side stagnation point. For the protruding nozzle case, the stagnation point is
located at (x, y) ≈ (0.25rd, 0.28rd), versus approximately (0.15rd, 0.28rd) for the flush
nozzle case. The absence of a wall in the protruding nozzle case allows considerable
entrainment of fluid from upstream of the nozzle exit (x < 0), as seen in the streamlines
to the −x side of the stagnation point. This appears to push the stagnation point to
the positive x-direction, relative to its position in the flush nozzle case.

Both streamline patterns in figure 17 also give a good indication of the boundaries
of the jet. The outer boundary of the jet is given by the dense cluster of streamlines
that follow the trajectory of the centre streamline (the streamline originating from
the centre of the nozzle exit, (x, y) = (0, 0)). The outer boundary for the protruding
nozzle case initially turns more quickly in the crossflow direction than does the outer
boundary for the flush nozzle case. At the downstream limit of the measurement area,
however, the flow patterns for the two nozzle configurations show similar degrees of
penetration into the crossflow, as quantified by their x-positions. On the windward
side of the jet, the inner boundary might be defined as the line separating those
streamlines that have an inflection point in turning toward the centre streamline,
and those with d2y/dx2 > 0, which do not turn toward the jet. This nominal inner
boundary appears to lie between the two dashed streamlines in each of the streamline
patters in figure 17. The inner boundaries are similarly positioned for the two nozzle
configurations.

Figure 18 shows the two-dimensional stream trace patterns determined from the
mean velocity fields in the z = 0.22rd plane. For this off-centreplane, these traces
(which are computed similarly to those in figures 2c and 17) are not true streamlines,
because the unmeasured out-of-plane velocity component is not zero. Nevertheless,
the lines are everywhere parallel to the local projection of the velocity field onto
the z =0.22rd plane, and give an indication of the region in the plane from which
fluid is entrained into the jet. Consider the dashed stream traces shown in figure 18.
For the protruding nozzle case (figure 18a), these dashed traces have initial points
(x, y) = (0.66rd, −0.25rd) and (0.75rd, −0.25rd), while for the flush nozzle case
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Figure 19. The trajectory of the local maxima in the mean crossflow-subtracted velocity
magnitude field 〈|u − v∞ey |〉 in the z = 0 plane, together with the scalar centreline (§ 3.1) and
centre streamline. Data for the protruding nozzle case.

(figure 18b), the initial points are (0.58rd, −0.25rd) and (0.66rd, −0.25rd). The left-
hand of the two dashed traces for each of the stream trace patterns has d2y/dx2 > 0
uniformly for y � 0.5rd, and is thus not drawn into the jet flow, while the right-hand
dashed trace in each pattern shows an inflection point, suggesting entrainment into
the jet. However, the dashed traces diverge from each other more rapidly in the flush
nozzle case, indicating that the jet in the flush nozzle case affects a significantly larger
region of the flow in this z = 0.22rd plane than does the jet in the protruding nozzle
case. This provides additional evidence that the flow for the flush nozzle case spreads
more quickly in the out-of-plane z-direction.

4.2. Flow trajectories

The bifurcated structure of velocity magnitude field in figure 16 is also seen clearly
in figure 19, which shows the trajectory of the points of local maximum velocity
magnitude in the centreplane, for the protruding nozzle case. Again, the crossflow
speed is subtracted from the vertical velocity component. We determine the trajectory
of the 〈|u − v∞ey |〉 field in the same fashion as the scalar trajectories in § 3.1. The
centre streamline plotted in the figure is as defined in § 4.1. The points of maximum
velocity magnitude initially follow the centre streamline quite closely. In the notation
of (3.1), the fit to the centre streamline has A= 1.92 and m = 0.342. Notably, the centre
streamline lies to the windward side of the scalar centreline trajectory. At roughly
s = 1.3 (measured along the centre streamline), the points of maximum velocity
magnitude abruptly shift to a trajectory lying in the wake region of the flow. The fit
to this wake trajectory has A= 1.36 and m =0.402. Figure 20 compares the centre
streamline and wake trajectories for the protruding and flush nozzle cases, with the
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Figure 20. Comparison of flow trajectories for both nozzle positions. Shown are the centre
streamline, the wake trajectory as described by local maxima in the |u − v∞ey | field, and the
scalar centreline.

scalar centrelines shown for comparison. Figure 20 demonstrates again that the flow
penetrates further into the crossflow with the nozzle exit placed flush with the facility
wall. Whether this trend persists into the far field, however, is somewhat in question.
At the upper boundary of the measurement area (y ≈ 3 rd), the wake trajectory for
the protruding nozzle case appears to be crossing to the outside of the trajectory for
the flush nozzle. Similarly, the centre streamline for the protruding nozzle case draws
closer to the centre streamline for the flush case for increasing downstream distance.
It is known that the low-pressure region in the wake of the jet has a strong effect on
the jet trajectory (e.g. Fric & Roshko 1994; Schlüter et al. 1999). It is possible that
while the jet issuing from the flush nozzle initially penetrates further into the flow
because of the lower crossflow momentum in the boundary layer, the presence of the
wall results in a stronger low-pressure region which acts to draw the flow back toward
the wall as the flow moves downstream. The streamline patterns of figure 17 provide
some support for this, in showing that with the protruding nozzle configuration, there
is noticeable entrainment of fluid from the x < 0 region, ‘behind’ the jet nozzle exit.
This may relieve the wake pressure deficit somewhat relative to the flush nozzle case,
where entrainment from x < 0 is impossible. Clarification of this point may require
pressure measurements in the wake region.

4.3. Centreline decay and flow width

As discussed above, the crossflowing jet can be viewed as approximating a pure jet in
its near field and a wake in its far field. In attempting to identify these scalings, the
choice of appropriate variables is important. For the near field, the jet is described
well by the raw velocity magnitude |u|. However, because wake scaling is defined
in terms of the deficit velocity, the appropriate variable for the crossflowing jet far
field is the magnitude of the velocity with the crossflow speed subtracted, as shown
in figure 16. In figure 21(a), the decay of the maximum 〈|u − v∞ey |〉 term is plotted
against the downstream coordinate s, for the flush nozzle case (the protruding nozzle
case is qualitatively similar). The two decay curves represent the initial trajectory
and later wake trajectory; the curves do not join smoothly because s is computed
separately for each curve based on the individual fits to (3.1). Also plotted in the
figure are curves with slope −1 and −2/3. In the initial portion of the trajectory,
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Figure 21. Downstream decay of the mean velocity magnitude in the jet centreplane.
(a) Decay of the maximum mean crossflow-subtracted velocity magnitude |u − v∞ey |m, and
(b) decay of the maximum mean raw velocity magnitude |u|m. Data for the flush nozzle case.

and outside of the potential core, the magnitude decays faster than 1/s, the pure jet
rate, and does not appear to follow a power law scaling. In the wake portion of the
trajectory, the magnitude appears to adhere to a power law decay with dependence
very close to s−2/3, suggesting a wake-like scaling. Figure 21(b) shows the maximum
mean raw velocity magnitude, 〈|u|〉, as a function of s. In this figure, the magnitude
along the initial trajectory shows some evidence of following a jet-like decay 1/s,
while the magnitude in the wake trajectory shows no power-law dependence, instead
asymptotically approaching the crossflow velocity v∞ = 2.95 m s−1. This emphasizes
that the raw velocity magnitude |u| is the appropriate variable for revealing the
possible jet-like scaling of velocity magnitude decay in the near field, while the
crossflow-subtracted magnitude |u − v∞ey | is the proper variable for describing the
possible wake-like scaling in the far field.

The flow width of the 〈|u−v∞ey |〉 field, for both the protruding and flush nozzles, is
shown in figure 22. Plotted are the full flow widths δ, defined as before as the distance
between points, in the trajectory-normal direction, where the magnitude is 20% of the
maximum value. (The flow width of the 〈|u|〉 field cannot be determined in this way
because the free-stream value of 〈|u|〉 is not zero.) As with the scalar growth rates
shown in figure 8, the initial growth rate exceeds the linear dependence of a pure jet.
In figure 22, there is then an abrupt transition to a slower growth rate which is very
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Figure 22. Downstream evolution of the full flow width, δ, of the 〈|u − v∞ey |〉 field,
in the centreplane.

close to the wake growth rate s1/3. The curves for the flush and protruding nozzle
cases are very similar, including the positions of the transition points, again pointing
out the similarity in the flow scalings when expressed in terms of s.

4.4. Three-dimensionality in the velocity field

The results of § 3.3 showed a high degree of three-dimensionality in the mean scalar
field, which may explain the failure of the scalar field to observe the expected wake-
like centreline scalar concentration decay rate in the far field of the measurement
area. In contrast, the velocity field shows wake-like behaviour in both centreline
velocity magnitude decay rate and flow width (figures 21 and 22), so we expect three-
dimensionality in the mean velocity field to be less marked than in the mean scalar
field.

The boundary contours for the 〈|u−v∞ey |〉 field in the centreplane, and in the planes
z = 0.22rd, 0.45rd and 0.67rd, for the flush nozzle case are shown in figure 23. The
boundary contours are defined as in figure 11. Also plotted in figure 23 is the centre
streamline. The region enclosed by each contour is heavily weighted toward the −x

side of the centre streamline, indicating the dominance of the wake region in the flow
development. The kidney-shaped flow cross-section described by the scalar contours
in figure 11 is not duplicated here; instead, the velocity magnitude contours for the
planes with higher z are contained within the contours for lower z, indicating that the
cross-sectional contours of velocity magnitude are everywhere convex in shape. The
absence of the out-of-plane velocity component perhaps explains the departure from
the kidney-shaped cross-section. (The averaged out-of-plane velocity component in
the centreplane of the jet is identically zero by symmetry, and thus its absence does
not affect the results shown in figures 19–22.)

Figure 24 gives the profiles of 〈|u − v∞ey |〉 in the z-direction, for s = 1.5rd, 2.0rd,
3.0rd and 4.0rd and n=0. The data are for the flush nozzle case. The s-coordinate
used in figure 24 is that determined from the least-squares fit to the wake trajectory,
as defined in § 4.2, ensuring that the velocity magnitude values at z =0 in the profiles
represent the local maxima. The figure shows that the maximum velocity magnitude
lies on the centreline for each of the given downstream positions. There is some
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Figure 24. Profiles of mean crossflow-subtracted velocity magnitude, 〈|u − v∞ey |〉, in the
out-of-plane z-direction, for s = 1.5rd, 2.0rd, 3.0rd and 4.0rd and n= 0. The s-coordinate is
defined along the velocity magnitude centreline. Data for the flush nozzle case.

uncertainty in this conclusion, given the highly discrete nature of these z-profiles;
even so, there is no indication that the form of the profiles changes with increasing
s to a bimodal profile, as do the scalar field profiles (figure 10). In particular, the
z-profiles of 〈|u − v∞ey |〉 are much nearer to observing self-similarity than are the
scalar field profiles.

Figure 25 presents profiles of 〈|u − v∞ey |〉 along the trajectory-normal direction, n,
in the different z-planes, for s = 2.0rd, 3.0rd and 4.0rd. The downstream coordinate,
s, used here is measured along the centre streamline. These profiles differ from the
corresponding scalar profiles (figure 12) in that the maximum velocity magnitude
values lie in the centreplane, as also noted in figure 24. The velocity magnitude
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Figure 25. Profiles of mean crossflow-subtracted velocity magnitude, 〈|u − v∞ey |〉, along the
trajectory-normal coordinate, n, in the different z = const measurement planes, for (a) s = 4.0rd,
(b) s =3.0rd and (c) s = 2.0rd.

profiles in the z =0 plane are also more symmetric than the scalar profiles for z = 0.
In fact, at s = 4.0rd, the profiles for z = 0 and 0.22rd are both near-symmetric, and
have maxima at nearly equal n values. This is again consistent with a more self-similar
evolution in the velocity field than in the scalar field.

4.5. Mean velocity field x- and y-profiles

Figure 26 presents profiles of the averaged velocity magnitude in the centreplane,
along lines of fixed x and fixed y. The profiles are computed as were the scalar field
profiles in § 3.4. As recommended by figure 21, the more upstream profiles (those for
fixed x) are compiled for the averaged raw velocity magnitude, 〈|u|〉, while the more
downstream, fixed-y profiles are compiled for the crossflow-subtracted magnitude,
〈|u − v∞ey |〉. The forms of the 〈|u|〉 profiles in the near field are similar to the
mean scalar field profiles of figure 13. In particular, the x = 0.1rd, 0.5rd and 1.0rd
profiles show a bell-shaped peak coinciding roughly with the centre streamline, and
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Figure 26. Averaged velocity magnitude profiles in the jet centreplane, for both the flush
and protruding nozzle cases. (a) The profiles of the averaged crossflow-subtracted velocity
magnitude, 〈|u − v∞ey |〉, for y =0.5rd, 1.0rd, 1.5rd and 2.5rd, and (b) the profiles of the
averaged raw velocity magnitude, 〈|u|〉, for x =0.1rd, 0.5rd, 1.0rd and 1.5rd.

depart from symmetry through the presence of elevated u values in the wake region
(positive y).

The profiles of 〈|u − v∞ey |〉 for y = 0.5rd and 1.0rd depart noticeably from the
corresponding scalar field profiles in figure 13 in showing two distinct peaks, with
one near the position of the centre streamline, and with the other, stronger peak
lying in the wake region. As the flow evolves downstream, the peak near the centre
streamline weakens, largely disappearing by y = 2.5rd. The resulting profile is nearly
symmetric, centred about the peak in the wake region. This again differs from the
scalar field profiles, which were centred near the centre streamlines; the velocity



Crossflowing jet evolution 29

0 1 2 3

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

1.5

Centre streamlines

x/rd

y = 2.5 rd

1.5 rd

1.0 rd

0.5 rd

(a)

0 1
–0.5

0

1.0

2.0

3.0

0 1 0 1 2

y/
rd

x = 0.5 1.0 rdrd 1.5rd 

Flush nozzle

100 mm nozzle

(b)

|u|/v∞

|u
 –

 v
∞
e y

|/v
∞

Figure 27. Averaged velocity magnitude profiles in the z = 0.22rd plane, for both the flush
and protruding nozzle cases. (a) The profiles of 〈|u − v∞ey |〉 for y = 0.5rd, 1.0rd, 1.5rd and
2.5rd and (b) the profiles of 〈|u|〉 for x = 0.5rd, 1.0rd and 1.5rd.

magnitude profiles at these far downstream positions also appear more symmetric
(save for the evidence of the boundary layer in the flush nozzle case) than do the
scalar field profiles.

The averaged velocity magnitude profiles in the z =0.22rd and 0.45rd planes are
given in figures 27 and 28, respectively. The profiles in the z = 0.22rd plane are
qualitatively similar to these in the centreplane. Evidence of the bimodal profile
structure remains in the y = 1.0rd and 1.5rd profiles, with the y = 2.5rd profiles
approaching symmetry around a single wake-side peak. Unlike the scalar field profiles
in the z =0.22rd plane (figure 14), the velocity magnitudes in the z =0.22rd plane
are everywhere lower than the corresponding magnitudes in the centreplane. In the
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Figure 28. Averaged velocity magnitude profiles in the z =0.45rd plane, for both the flush
and protruding nozzle cases. (a) The profiles of 〈|u|〉 for x =1.0rd and 1.5rd, and (b) the
profiles of 〈|u − v∞ey |〉 for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd.

z = 0.45rd plane, the bimodal form of the fixed-y velocity magnitude profiles no
longer pertains, with only the peak in the wake region being evident. Interpretation
of the profiles in the z = 0.45rd plane is, however, constrained somewhat by limited
statistical convergence.

Finally, as with the scalar field profiles, the velocity magnitude profiles for the flush
and protruding nozzle configurations are in good agreement (excepting the boundary
layer evident in the flush nozzle case) at y = 2.5rd, for the different z-planes shown.
This further supports the idea that the asymptotic state of the flow is independent of
the nozzle position.

5. Turbulence quantities
Turbulence quantities involving the fluctuating velocity and scalar field terms

are available owing to the high resolution of the present data. In particular, the
simultaneous nature of the measurements permits the scalar flux components, 〈u′C ′〉
and 〈v′C ′〉, to be determined. These represent unresolved terms in the Reynolds-
averaged scalar transport equation, and correspond to subgrid production terms in
LES-filtered scalar transport. From the evidence of previous computations, these
scalar flux terms are very difficult to compute accurately (Alvarez et al. 1993). This
section also presents results for the scalar variance, C ′2, and the u′2, v′2 and u′v′

components of the turbulent stress tensor.

5.1. Resolution estimates

The accuracy of the measured fluctuation quantities is dependent upon the resolution
of the data. Following Su & Clemens (2003), we write

λν = Λ δRe
−3/4
δ . (5.1)

Here, λν represents the characteristic full width of a structure in the kinetic energy
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s/rd U (m/s) δ (m) Reδ λν (µm) λD (µm) �xC (µm) �xu (µm)

1 11.3 0.019 14100 220 180 175 230
2 4.0 0.041 10800 580 480 175 310
3 3.0 0.046 9100 740 610 175 420
3.5 2.6 0.052 8900 850 700 175 420

Table 3. Outer scale parameters and resolution estimates. The estimated finest length scales
in the velocity and scalar fields are given by λν and λD , respectively. The grid resolution of the
scalar field images is �xC , and the grid resolution of the velocity fields is given by �xu.

dissipation rate fields, δ is a measure of the local mean flow width, and the local outer
scale Reynolds number, Reδ , is defined in terms of δ and a velocity U quantifying
the mean shear. Defining the flow width δ as the distance between the 20% points
of the velocity magnitude profile, Su & Clemens (2003) suggest a value for the
proportionality constant Λ ≈ 15. For the scalar mixing, the characteristic full width
of a structure in the scalar energy dissipation rate field is given by

λD = λν Sc−1/2, (5.2)

where the Schmidt number, Sc, for this flow system is 1.49 (§ 2).
To determine λν and λD for various downstream positions s in the present data, we

estimate δ from figure 22 and U from figure 21. These outer scale parameters, and
the resulting outer scale Reynolds number Reδ , are given in table 3 for s/rd = 1, 2,
3 and 3.5. Table 3 also presents the resolution estimates determined from (5.1) and
(5.2).

The downstream positions s shown are those determined from the wake portion
of the velocity magnitude trajectory shown in figure 19. For s/rd = 1, the flow still
follows the initial trajectory (see, for example, figure 19 or 22), so the relevant U is
the maximum mean raw velocity magnitude, |u|m (figure 21a), and the proper δ is the
flow width of the 〈|u|〉 field (not shown). For s/rd = 2, 3 and 3.5, the flow follows the
wake trajectory, so the proper U is the maximum mean crossflow-subtracted velocity
magnitude |u − v∞ey |m (figure 21b), with flow width δ from figure 22. The resulting
length scale estimates λν and λD are found from (5.1) and (5.2) using a proportionality
constant Λ = 15. The grid spacing in the scalar field data is �xC = 175.1 µm, which
resolves the scale λD at all positions shown, with Nyquist resolution except at s/rd = 1.
The grid spacing in the velocity fields, �xu, slightly exceeds λν at s/rd = 1, but easily
resolves λν for the remaining positions. (�xu varies because of the different sizes of
the PIV imaging windows, shown in figure 2.) These are rough estimates; the question
of the true U and δ characterizing the outer scales of the developing region of the
crossflowing jet is an open one.

5.2. Scalar variance

Figure 29 shows the averaged scalar variance fields, 〈C ′2〉, for the flush nozzle
case, in the centreplane and the planes z = 0.22rd, 0.45rd and 0.67rd. The fields for
z � 0.45rd show local maxima both on the jet outer boundary and in the jet wake
region. This bifurcated structure is familiar from mixing in canonical shear flows,
such as mixing layers or jets, with the peak variances being associated with steep
gradients in the mean scalar fields. Sherif & Pletcher (1991) previously observed the
bifurcated structure of the scalar variance in crossflowing jets. The averaged 〈C ′2〉
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Figure 29. Averaged scalar variances, 〈C ′2〉, for the flush nozzle case, in the planes
(a) z =0, (b) z = 0.22rd, (c) z = 0.45rd, and (d ) z = 0.67rd.

field at z = 0.67rd (figure 29d ) shows less evidence of a bifurcation, probably owing
to the proximity of this plane to the jet boundary in the z-direction.

A more quantitative view is available by considering profiles of 〈C ′2〉. Figure 30
presents x- and y-profiles of 〈C ′2〉 in the z = 0 plane for both the flush and protruding
nozzle cases. In the jet near field, at x = 0.1rd and x = 0.5rd, the profiles are
approximately symmetric about the centreline, and the discrepancy between the
two nozzle configurations is small. Just outside of the potential core, at x = 1.0rd, the
bifurcated structure of the variance profile is distinctly asymmetric, with the windward
peak being much stronger than the wake-side peak; additionally, the variances are
noticeably higher for the flush nozzle than for the protruding nozzle configuration.
These trends persist as the jet turns in the crossflow direction, as seen in the x = 1.5rd,
y = 0.5rd and y = 1.0rd profiles. Both the profile asymmetry and the discrepancy
between nozzle configurations are most significant at y = 0.5rd. By y = 1.5rd, the two
nozzle configurations show similar profile magnitudes, while at y = 2.5rd, the variance
profiles are again nearly symmetric, with symmetry axes to the wake side of the centre
streamline.

The variance profiles in the off-centreplanes suggest, however, that the asymptotic
downstream state of the scalar variance is not characterized by symmetry between
the windward and wake sides of the flow. Figure 31 and 32 show the profiles of 〈C ′2〉
in the z = 0.22rd and 0.45rd planes, respectively. In both of these planes, the variance
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Figure 30. Averaged scalar variance profiles in the jet centreplane, for both the flush and
protruding nozzle cases. (a) The profiles for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles
for x =0.1rd, 0.5rd, 1.0rd and 1.5rd.

profiles (for both nozzle configurations) observe similar trends to those seen in the
z = 0 plane, except that the wake-side variance peak is larger than the windward-side
peak at large y values. This can be seen in the y = 2.5rd profile in the z =0.22rd
plane, and in the y = 1.5rd and 2.5rd profiles in the z =0.45rd plane. The implication
of this is that as the flow moves downstream, there is more pronounced mixing
between jet and ambient fluid on the wake side of the flow than on the windward
side, possibly due to the persistence of the coherent vortical structures in the wake
region (e.g. Kelso et al. 1996). This asymmetry in the variance profiles is inconsistent
with the assumption of wake-like asymptotic similarity in the mixing field, and further
contributes to the failure of the scalar field to observe wake scaling with increasing
downstream distance (§ 3.2).
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Figure 31. Averaged scalar variance profiles in the z = 0.22rd plane, for both the flush and
protruding nozzle cases. (a) The profiles for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles
for x = 0.5rd, 1.0rd and 1.5rd.

5.3. Turbulent scalar flux profiles

The turbulent scalar flux terms, defined as the product of the scalar fluctuation
term and the components of the velocity fluctuations, u′

iC
′, appear in the Reynolds-

averaged scalar transport equation (here in non-dimensional form):

〈ui〉
∂〈C〉
∂xi

− 1

ReSc

∂2

∂xi∂xi

〈C〉 = − ∂

∂xi

〈u′
iC

′〉, (5.3)

where Re is the Reynolds number formed from the length and velocity scales used for
normalization, and Sc is the Schmidt number. The scalar fluxes, 〈u′

iC
′〉, are unresolved

in a RANS simulation, and must be modelled to close (5.3). (In the context of large-
eddy simulation, where quantities are decomposed into filtered (denoted by ( )) and
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Figure 32. Averaged scalar variance profiles in the z = 0.45rd plane, for both the flush and
protruding nozzle cases. (a) The profiles for x = 1.0rd and 1.5rd and (b) the profiles for
y =0.5rd, 1.0rd, 1.5rd and 2.5rd.

subgrid (denoted by ( )′′) parts, the divergence of the corresponding filtered LES scalar
flux vector, u′′

i C
′′, appears in the production term for the filtered scalar field, C. In

the LES of mixing, these scalar fluxes are also unresolved and are thus entrusted to
subgrid models.)

Figure 33 shows profiles of the scalar flux components 〈u′C ′〉 and 〈v′C ′〉, in the
centreplane for the flush nozzle case. The same profiles for the protruding nozzle
configuration are shown in figure 34. The profiles indicate that 〈u′C ′〉 and 〈v′C ′〉
are negatively correlated throughout the measurement area. Beyond the potential
core, on the windward side of the jet, 〈u′C ′〉 is positive, with the peak positive value
occurring slightly outside the jet centre streamline, and 〈v′C ′〉 is negative. On the lee
side, 〈u′C ′〉 < 0 and 〈v′C ′〉 > 0. The location at which the signs of these terms change
lies slightly to the wake side of the centre streamline. The profiles for the flush and
protruding nozzle cases differ in that the peak values of 〈u′

iC
′〉 are slightly higher

for the flush case, in the near field. Toward the downstream side of the measurement
area (specifically, y � 1.0rd), the magnitudes of 〈u′

iC
′〉 are similar for both nozzle

configurations.
The form of the 〈v′C ′〉 profile, in particular, seems counterintuitive. A simple

interpretation of this term might hold that since the crossflowing jet imposes a deficit
velocity in the y-direction, fluid elements originating in the crossflow will have a v-
component of velocity in excess of the mean (v′ > 0), while having scalar concentration
less than the mean (C ′ < 0). Then 〈v′C ′〉 would be uniformly negative, which is not
the form of 〈v′C ′〉 measured here. Instead, both the 〈v′C ′〉 and 〈u′C ′〉 profiles can be
readily interpreted in terms of the spread and centreline concentration decay of the
jet. To interpret the 〈v′C ′〉 term, we see from, for example, figure 11 that turbulent
advection into the jet is marked by v′ > 0 on the jet outer boundary, and v′ < 0 on
the inner boundary. As a result, negative 〈v′C ′〉 values to the outside of the jet, and
positive values to the inside, show that fluid elements advected in the y-direction
towards the centre of the jet are characterized by excess ambient fluid concentration
(C ′ < 0). Positive values of 〈u′C ′〉 to the outside (increasing x) of the jet, and negative
〈u′C ′〉 to the inside, indicate that fluid elements undergoing turbulent advection in
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of 〈u′C ′〉 and 〈v′C ′〉 for x = 0.1rd, 0.5rd, 1.0rd and 1.5rd and (b) the profiles for y = 0.5rd,
1.0rd, 1.5rd and 2.5rd.

the x-direction towards the boundaries of the jet (i.e. on the outer part of the jet,
u′ > 0, and on the inner part, u′ < 0) are characterized by excess jet fluid concentration
(C ′ > 0). The measured 〈u′

iC
′〉 thus reflect the spread of the jet boundaries, and the

decay of maximum scalar concentration, with increasing downstream distance.
The present data are consistent with the heat flux profiles reported by Andreopoulos

(1983), in showing a negative correlation between 〈u′C ′〉 and 〈v′C ′〉, although that
earlier study does not show sign changes in the profiles. Instead, the 〈u′

iC
′〉 profiles of

Andreopoulos resemble the portion of the profiles of figures 33 and 34 for the outer
part of the jet, with 〈u′C ′〉 > 0 and 〈v′C ′〉 < 0. The data of Andreopoulos are for a jet
with nozzle exit flush with a wall, and with very low velocity ratio, r = 0.5; with that
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Figure 34. Scalar flux profiles in the jet centreplane, for the protruding nozzle case. (a) The
profiles of 〈u′C ′〉 and 〈v′C ′〉 for y =0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles for
x =0.1rd, 0.5rd, 1.0rd and 1.5rd.

configuration, the lee side of the jet impinges on the wall. The r =0.5 jet thus has no
free inner (lee-side) boundary, which explains why the 〈u′

iC
′〉 profiles for the r = 0.5

flow agree only with the windward portion of the profiles for the r = 5.7 flow.
In the large-eddy simulations by Yuan (1997) of r = 3.3 scalar mixing, in which the

jet nozzle exit is also flush with a wall, the profiles of mean scalar concentration show
that the jet stands clear of the wall, with a distinct inner boundary in the mixing field.
Accordingly, the 〈u′C ′〉 profiles show sign changes similar to those for the present
r = 5.7 jet. The work of both Andreopoulos (1983) and Yuan (1997) suggests that the
transitional value of r , above which the jet inner boundary is free of the wall and the
〈u′

iC
′〉 profiles resemble those of figures 33 and 34, is between 1.0 and 2.0.
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Figure 35. Scalar flux profiles in the z = 0.22rd plane, for the flush nozzle case. (a) The profiles
of 〈u′C ′〉 and 〈v′C ′〉 for x = 1.0rd and 1.5rd and (b) the profiles for y = 0.5rd, 1.0rd, 1.5rd and
2.5rd.

It is also instructive to compare the magnitudes of the 〈u′C ′〉 and 〈v′C ′〉 profiles in
figures 33 and 34. The 〈u′C ′〉 component consistently has a higher magnitude than the
〈v′C ′〉 component, suggesting that in the centreplane, turbulent scalar transport in the
cross-stream direction is more significant than transport in the streamwise direction.
Also, the highest magnitudes of 〈u′C ′〉 are on the outer portion of the jet, indicative
of stronger turbulent scalar transport on the windward side, though the discrepancy
between |〈u′C ′〉| on the windward and wake sides of the jet weakens with increasing
downstream distance. This is consistent with the 〈C ′2〉 results of § 5.2, which showed
higher scalar variance values on the windward side, with the values on the windward
and wake sides approaching equality at the downstream limit of the imaging region.
Yuan (1997) observed also that the near-field discrepancy in |〈u′C ′〉| on the windward
and wake sides decreased as the jet Reynolds number increased.

Figures 35 and 36 show the profiles of 〈u′
iC

′〉 for the flush nozzle case in the
z = 0.22rd and 0.45rd planes, respectively. (The data for the protruding nozzle case
are qualitatively similar.) In the z =0.22rd plane, the primary difference with the
results for the centreplane is that 〈u′C ′〉 > 0 on the wake side of the jet for y = 0.5rd
(this is also weakly evident for y = 1.0rd). In the z =0.45rd plane, though the trends
are obscured by the limited statistical convergence of the measurements, traceable
to the smaller number of images collected, it appears that 〈u′C ′〉 > 0 for y � 0.5rd.
Yuan (1997) proposed that positive values of 〈u′C ′〉 in the off-centreplanes reflected
the probability that fluid parcels with excess velocity in the initial jet momentum
direction would also have excess jet fluid concentration.

This interpretation can also be cast in terms of the large-scale organization of
the velocity field. At the edges of jet in the z-direction, the x-component of the
crossflow fluid velocity relative to the jet fluid velocity is negative, as the crossflow
fluid is diverted around the jet into the wake region (this also agrees with the sense
of rotation of the counter-rotating vortex pair). Then u′ < 0 correlates with C ′ < 0
(crossflow fluid), so 〈u′C ′〉 > 0. This picture is also consistent with the negative values
of 〈u′C ′〉 observed on the wake side of the flow in the centreplane, and in the
z = 0.22rd plane for y � 1.5rd. The CVP is associated with the positive x-component
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Figure 36. Scalar flux profiles in the z = 0.45rd plane, for the flush nozzle case. (a) The profiles
of 〈u′C ′〉 and 〈v′C ′〉 for x = 1.0rd and 1.5rd and (b) the profiles for y = 0.5rd, 1.0rd, 1.5rd and
2.5rd.

of velocity on the wake side in the centreplane, but, as seen in the streamline patterns
of figure 17, those fluid parcels with u′ > 0 carry crossflow fluid (C ′ < 0) into the jet,
giving 〈u′C ′〉 < 0.

5.4. Turbulent stresses

Figure 37 shows profiles of the in-plane turbulent normal stress components
(equivalently, components of the turbulent kinetic energy), 〈u′2〉 and 〈v′2〉, and the
turbulent shear stress, 〈u′v′〉, for the centreplane for the flush nozzle case. Figure 38
gives profiles of the same quantities for the centreplane in the protruding nozzle case.
The results for the flush and protruding nozzle positions are very similar, the primary
difference being the slightly smaller magnitudes for the protruding nozzle case, so the
conclusions drawn here are general to both nozzle configurations.

Near the jet exit (at x = 0.1rd), the averaged normal stress components 〈u′2〉 and
〈v′2〉 show peaks on both the windward and wake sides of the jet. These reflect the
dominance of the jet shear layer instability in the near field. The stress component
in the jet initial momentum direction, 〈u′2〉, has higher magnitude than 〈v′2〉 in the
near field, which was also noted in the LES of Yuan et al. (1999); Yuan attributed
the reduced 〈v′2〉 to suppression by strong pressure gradients in the y-direction. At
x = 1.0rd, approximately the end of the potential core, the roll-up structures in the
shear layer have met, giving single peaks in the 〈u′2〉 and 〈v′2〉 profiles. The peak
values of 〈u′2〉 and 〈v′2〉 are then comparable, though the maximum 〈u′2〉 occurs just
to the windward side of the centre streamline, and the maximum 〈v′2〉 lies to the wake
side. This slight misalignment of the maximum 〈u′2〉 and 〈v′2〉 persists througout the
measurement region. Yuan et al. (1999) found that sufficiently far downstream, the
〈u′2〉 profile once again takes on a bimodal shape, as turbulence generated by shear
between the jet and crossflow fluid produces a local peak in the wake region. This
was not observed in the present measurements, which is probably due to insufficient
downstream extent of the measurement area.

The turbulent shear stress, 〈u′v′〉, in the near field of the jet takes on high negative
values on the windward side, and high positive values on the wake side. These stresses
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Figure 37. Stress profiles in the jet centreplane, for the flush nozzle case. (a) The profiles of
y = 0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles for 〈u′2〉, 〈v′2〉 and 〈u′v′〉 for x = 0.1rd,
0.5rd, 1.0rd and 1.5rd. The fixed-y profiles of 〈u′v′〉 in (a) are stretched by a factor of 3.

also result from the jet shear-layer instability. As the flow evolves, the dominant
mechanism for generation of 〈u′v′〉 becomes shear between the jet and crossflow fluid.
At y = 1.0rd, regions of negative 〈u′v′〉 begin to dominate, slightly to the wake side
of the centre streamline, with positive values to either side. The regions of positive
〈u′v′〉, particularly that on the windward side, become progressively weaker relative
to the regions of negative values for increasing y. These trends are consistent with
those found by Andreopoulos & Rodi (1984) in an r = 2 jet. As the jet bends in the
crossflow direction, the sign of 〈u′v′〉 generally correlates with the sign of −∂〈v〉/∂x.
The deficit velocity due to the wake-like character of the jet is manifested in the
positive 〈u′v′〉 on the wake side of the jet and negative 〈u′v′〉 on the windward side.
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Figure 38. Stress profiles in the jet centreplane, for the protruding nozzle case. (a) The profiles
of 〈u′2〉, 〈v′2〉 and 〈u′v′〉 for y = 0.5rd, 1.0rd, 1.5rd and 2.5rd and (b) the profiles for x = 0.1rd,
0.5rd, 1.0rd and 1.5rd. The fixed-y profiles of 〈u′v′〉 in (a) are stretched by a factor of 3.

The small region of positive 〈u′v′〉 on the outer boundary of the jet for small y arises
because as the jet turns, the streamwise velocity on the outer edge exceeds slightly
the crossflow velocity.

The turbulent stress profiles in the z = 0.22rd and 0.45rd planes (figures 39 and 40)
largely reproduce the trends from the centreplane, outside the near field. A significant
difference between the profiles in the centre and off-centreplanes is that the profile
peaks for z = 0.22rd and 0.45rd are noticeably shifted toward the wake region. The
structure of the turbulent stresses thus shows evidence of the characteristic kidney-like
structure, depicted in figure 1 and also seen in the scalar fields (§ 3.3), but which was
not evident in the velocity magnitude fields (§ 4.4).
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Figure 39. Stress profiles in the z = 0.22rd plane, for the flush nozzle case. (a) The profiles of
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Figure 40. Stress profiles in the z = 0.45rd plane, for the flush nozzle case. (a) The profiles of
〈u′2〉, 〈v′2〉 and 〈u′v′〉 for x = 1.0rd and 1.5rd and (b) the profiles for y = 0.5rd, 1.0rd, 1.5rd and
2.5rd. The fixed-y profiles of 〈u′v′〉 are stretched by a factor of 3.

6. Conclusions
Simultaneous, planar measurements of scalar mixing and two-dimensional velocity

fields have permitted the detailed study of the developing region of turbulent
crossflowing jets with velocity ratio r = 5.7. Measurements in off-centreplanes, in
addition to the symmetry plane of the flow, give a direct view of the complex
three-dimensional nature of the flow.

The scaling properties of the mean flow in the symmetry plane were measured and
compared with known scalings for pure jets (in the near field of the crossflowing
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jet) and wakes (in the far field). The downstream evolution of the velocity field
more closely follows these canonical scalings in the appropriate limits than does the
evolution of the scalar field. The scalar centreline value, Cm, decays with downstream
distance in the near field as s−1, consistent with jet scaling, though the scalar field
flow width in the near field does not observe the jet-like linear growth with s. In the
far field, Cm decays much faster than s−2/3, the expected wake decay rate, though
the flow width seems to approach the s1/3 wake growth rate. The maximum velocity
magnitude, |u|m, in the near field decays slightly faster than s−1. However, in the far
field, the crossflow-subtracted maximum velocity magnitude, |u − v∞ey |m, has a decay
rate consistent with s−2/3, and a growth rate consistent with s1/3.

The departure from jet scaling for both the scalar and velocity fields in the near
field is easily explained by consideration of the flow structure. Cross-stream profiles of
scalar concentration and velocity magnitude show that the flow becomes asymmetric
very near the nozzle exit, with excess values in the wake region of the flow. In
the far field, the scalar field profiles in three dimensions are far from axisymmetric,
the expected asymptotic state for a wake-like flow, explaining the failure of the
scalar field to observe wake scaling. The good agreement with wake scaling of the
velocity field, in contrast, is probably explained by the evidence that the crossflow-
subtracted velocity field approaches an axisymmetric cross-sectional form in the far
field.

These scaling results were found to be consistent between the two flow geometries
studied, one with the jet nozzle exit flush with the wind tunnel wall, and one with
the jet nozzle exit protruding into the region of uniform crossflow velocity. However,
some of the results for the scalar field evolution differ from those of Smith & Mungal
(1998), who considered the flush nozzle geometry for a range of velocity ratios, r =5
to 25, that encompass the present conditions. Although departing from the results of
the present work, the results of Smith & Mungal were self-consistent over the full
range of r . The primary difference is that Smith & Mungal used a top-hat jet exit
velocity profile, while the present work used a pipe flow profile. It can be concluded
that the jet exit velocity profile is more significant in defining the evolution of the
crossflowing jet mixing field than the jet nozzle position or the velocity ratio (within
the range of r considered by Smith & Mungal).

Analysis of turbulence quantities in the scalar and velocity fields is permitted by
the high resolution of the measurements. Profiles of the scalar variance, the x- and
y-components of the turbulent scalar flux, and the in-plane turbulent stresses were
presented in the jet centreplane and the z =0.22rd and 0.45rd planes. The results
show that the intensity of the mixing, as quantified by the scalar variance and the
magnitude of the turbulent scalar fluxes, is initially higher on the jet windward side,
but eventually becomes higher on the wake side.

The results of this paper, for both the mean and fluctuating quantities, should find
particular application in the assessment of simulations of crossflowing jet mixing. The
disparate scaling properties of the scalar and velocity fields illustrate the inadequacy
of treating the mixing problem as a direct analogue of the flow field. The profiles
presented here of the turbulent scalar fluxes, for example, will be of direct use in
evaluating the accuracy of scalar mixing models used in simulations.
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